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Chapter 14: Multiple Linear Modeling 

Introducing Multiple Predictors 

Investigation: On Palmer Island, biologists are studying the evolutionary 

development of penguin populations. One variable of interest is the bill 

depth (beak depth) of these penguins and explaining the variation they see 

in this variable.  

Unit of Observation: One penguin 

Response variable: Bill depth 

 

Naturally, we would expect penguins with a higher body mass to have deeper bills. Perhaps 

that might be a helpful predictor 

Predictor: Body mass 

 

 

 

 

 

 

 

What do you notice about this relationship? Does it follow the trend you would expect? How might we explain 

what we see in the scatterplot? 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) 22.0339465  0.5036206   43.75   <2e-16 *** 

body_mass_g -0.0011621  0.0001177   -9.87   <2e-16 *** 

--- 

 

Residual standard error: 1.744 on 340 degrees of freedom 

Multiple R-squared:  0.2227, Adjusted R-squared:  0.2204  

F-statistic: 97.41 on 1 and 340 DF,  p-value: < 2.2e-16 
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Next, the biologists consider two different penguin species on the island: “Gentoo” and “Adelie.” It might be 

that the penguin’s species might explain differences in bill depth. 

After stratifying by Species, we get the following result 

 Adelie Gentoo 

Sample Means 18.346 14.982 

Sample SD 1.217 0.981 

 

What do you notice about this relationship? 

 

 

 

• A Linear Model with…A binary predictor? 

o Even without a numeric scale, we could create a linear model using only a binary predictor by 

treating species as a “dummy variable.” 

o Dummy Variable: A variable whose levels have been converted to the values 0 and 1. 

o We use the term “dummy” because the assignment of 0 and 1 to each level is arbitrary and 

carries no contextual meaning. 

 

 

 

 

o The slope of the linear model is equivalent to…the sample mean difference 

o Also notice that “Gentoo” is listed in the summary output. That means that the category level 

“Gentoo” has been assigned to the value 1. 

o We expect the bill depth of a Gentoo penguin to be 3.364 mm shorter on average than if it 

were an Adelie penguin. 

o Additionally, the t-test for the slope is the same as a two-sample t-test for means.  

 

 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   18.34636    0.09092  201.79   <2e-16 *** 

speciesGentoo -3.36424    0.13570  -24.79   <2e-16 *** 

--- 

 

Residual standard error: 1.117 on 272 degrees of freedom 

Multiple R-squared:  0.6932, Adjusted R-squared:  0.6921  

F-statistic: 614.7 on 1 and 272 DF,  p-value: < 2.2e-16 
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• Multiple Linear Modeling: Modeling with 2 or more predictors using linear terms. 

By creating a model using both species and body 

mass, we can get an even more accurate 

understanding of the response variable, bill depth. 

• Exploring an “Additive Model” 

o An additive model is when the effect 

of one predictor on the response 

remains constant, regardless of the 

value of the other predictor. 

o This means that the additive 

difference in bill depth between each 

species remains about the same, 

regardless of the penguin’s body mass.  

 

 

 

 

 

 

o Interpreting the Additive Model Coefficients 

o When fitting models with multiple predictors, the slope values represent the 

relationship of one predictor with the response while holding the other predictor(s) 

constant. 

For every one kg increase in body mass, we expect bill depth to be 1.4647 mm higher on average, if 

comparing two penguins of the same species. 

For penguins of species “Gentoo”, we expect bill depth to be 5.3787 mm lower on average, if 

comparing two penguins of the same body mass. 

�̂� = 12.9261 + 1.4647(body mass) – 5.3787(species*) 
*Where species = 0 if “Adelie” and 1 if “Gentoo.” 

Practice: What would be the model predicted bill depth of a penguin with body mass of 3.8kg and of the 

species Adelie? 

 

 

Coefficients: 

         Estimate Std. Error t value Pr(>|t|)     

(Intercept)    12.9261     0.4134   31.27   <2e-16 *** 

body_mass_kg    1.4647     0.1101   13.31   <2e-16 *** 

speciesGentoo  -5.3787     0.1846  -29.13   <2e-16 *** 

--- 

Residual standard error: 0.8704 on 271 degrees of freedom 

Multiple R-squared:  0.8145, Adjusted R-squared:  0.8131  

F-statistic: 594.9 on 2 and 271 DF,  p-value: < 2.2e-16 
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• Exploring an “Interaction Model” 

o An interaction model is when the effect of one predictor on the response depends on the value 

of the other predictor. 

Example: Participants were asked to take a test on a topic that was unfamiliar to them. The response variable 

is their score on that exam. We have two variables we're going to use to predict their test score: 

❖ How much time they studied (in minutes) 

❖ Which study materials they were given (Clear or Unclear) 

The "Clear" study materials were carefully structured to benefit students more, whereas the "Unclear" 

instructions were full of jargon and not very accessible for learning. 

Simple Model 

❖ This simple model uses only study time as a 

predictor of exam score. 

 

Additive Model 

❖ Here, we’re assuming that each predictor 

works independently in its effect on exam 

score. 

❖ 1) There is a linear relationship between study 

time and exam score. 2) Students with clearer 

instructions did better on average than those 

who didn’t. 3) Each predictor’s effect on the 

response is independent of the other. 

 

Interaction Model  

❖ With an interaction model, we allow the slopes 

to be different for each group. The predictors 

are dependent. 

 

In context, what does the interaction model tell us? 

For unclear instructions: we see a very mild linear 

relationship between study time and score 

For clear instructions: we see a much steeper linear 

relationship between study time and score 
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Simple Model 
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  14.6439     7.3345   1.997   0.0506 .   

study_time    0.6093     0.1352   4.507 3.24e-05 *** 

--- 

Residual standard error: 18.05 on 58 degrees of freedom 

Multiple R-squared:  0.2594, Adjusted R-squared:  0.2466  

F-statistic: 20.32 on 1 and 58 DF,  p-value: 3.24e-05 

 

Write the Model Equation:  
 

 

 

Additive Model (Intercept Adjustment) 
 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   32.45560    5.39121   6.020 1.33e-07 *** 

study_time     0.52092    0.09191   5.668 5.00e-07 *** 

groupUnclear -26.53222    3.16816  -8.375 1.65e-11 *** 

--- 

Residual standard error: 12.19 on 57 degrees of freedom 

Multiple R-squared:  0.668, Adjusted R-squared:  0.6563  

F-statistic: 57.33 on 2 and 57 DF,  p-value: 2.259e-14 

 

Write the Model Equation:  

 

 

Interaction Model (Intercept and Slope Adjustment) 
 

Coefficients: 

                        Estimate Std. Error t value Pr(>|t|)     

(Intercept)              17.4060     6.6242   2.628  0.01107 *   

study_time                0.8026     0.1179   6.805 7.27e-09 *** 

groupUnclear              3.1062     9.1483   0.340  0.73548     

study_time:groupUnclear  -0.5766     0.1687  -3.417  0.00119 **  

--- 

Residual standard error: 11.19 on 56 degrees of freedom 

Multiple R-squared:  0.7252, Adjusted R-squared:  0.7105  

F-statistic: 49.27 on 3 and 56 DF,  p-value: 1.013e-15 

 

Write the Model Equation:  
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• Inference for Additive and Interaction models 

Judging Interaction Term: To determine if there is truly improvement from the interaction term (rather than 

just some random chance interaction), look at the p-value for the interaction term only. 

Null hypothesis: Coefficient for interaction term = 0 

P-value from interaction term: 0.00119 

Conclusion: We have very strong evidence of at least some interaction between study time and instructions 

type. 

 

Additive Model Judgments: IF there were no evidence for an interaction term, we could instead judge if we 

should keep both predictors as independent, additive terms.  

Null hypothesis for study time: No linear relationship between study time and exam score after controlling for 

instructions type.  

 

P-value and Conclusion: 5x10^-7, strong evidence of relationship, even after using instructions type 

 

Null hypothesis for Instructions: No linear relationship between instructions type and exam score after 

controlling for study time.  

 

P-value and Conclusion: 1.65x10^-11, strong evidence of relationship, even after using study time 

 

o Adjusted R squared—how much variability are we explaining with this model? 

▪ When adding predictors, multiple r2 will only increase. For this reason, it’s more 

meaningful to use Adjusted r2 

▪ Adjusted r2 is the variability explained in the response variable after adjusting for… 

correlation likely due to random chance.   

▪ In cases where the new term performs worse than random chance, adj r2 drops! 

After adjusting for expected correlation due to random chance, how much variability do we estimate is 

explained by including the interaction term? 

0.7105 – 0.6563 = 0.0542 = 5.42% 
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Read on your own 

• Modeling for Explanation vs. Prediction 

o Modeling for Explanation focuses on the individual relationships.  

▪ If studying whether one specific predictor might reasonably cause changes in the 

response, we might include other potential confounding variables as covariates. 

• This is especially important in observational settings when we can’t trust our 

design to rule out other systematic differences. We need to include covariates to 

see if our supposed causal predictor explains additional variability. 

▪ This allows us to stratify by other variables, and then observe if there is still a 

relationship between the supposed causal predictor and the response. 

▪ Our interest is on the slope value, the p-value for that causal predictor, and how much 

improvement we see in r2 with its addition.  

 

o Modeling for Prediction focuses on raising r2 without overfitting. 

▪ We want to include as many predictors as we have available, but we still want to filter 

out any redundant or non-correlated predictors to keep the model simple. 

▪ Our interest is in raising the accuracy of our predictions by finding the highest r2 value 

without overfitting. 

 

Modeling for Explanation 

How effective is this medication at reducing LDL 

cholesterol after controlling for other known effects 

for high LDL cholesterol? 

Modeling for Prediction 

Can we create a model to predict LDL cholesterol 

accurately using easy-to-collect, non-invasive 

variable measures? 

 

 

 

 

 

Modeling for Explanation and Observational Studies 

• Modeling for explanation is the basis for “causal inference” in the context of observational data. 

• Even though we can’t always control variables carefully using a randomized experiment, we can still 

make approximations toward causality by including covariates. 

• If the p-value for a predictor is still low in a model, even after controlling for other possible 

confounders, then we might make a mild argument for causality! 

 

 

Response 

Response 
Causal 

Predictor Effect 

Covariate 

Covariate 
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Adding more Complexity!  

• More dimensions 

o Even though we can’t easily see them, we can add more 

numeric dimensions to our model.  

o You can imagine this idea with 2 numeric predictors, but 

mathematically, we can continue adding more 

dimensions. 

 

• Multicollinearity 

o Even though a set of predictors may have individual 

correlation with the response variable, there may be a 

multicollinearity issue. 

o Multicollinearity: When multiple predictor variables are, 

themselves, highly correlated and explain mostly the 

same variance in the response variable 

o Multicollinearity is a big concern with modeling for explanation—if done carelessly, the 

coefficient estimates will be unreliable. 

o Multicollinearity is a smaller concern when modeling for prediction—we just don’t want to 

overfit the model. Overfitting means being too sensitive to our sample of data and modeling 

noise rather than signal.  

Seat Distance: Consider a model to estimate someone’s preferred distance away from the steering wheel 

while driving (distance from wheel to hip center) based on other physical measures. Two predictor variables 

we have in our data are Height, and Height with Shoes. We can see that each individually are correlated with 

seat distance. 

 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 556.2553    90.6704   6.135 4.59e-07 *** 

Ht           -4.2650     0.5351  -7.970 1.83e-09 *** 

--- 

Residual standard error: 36.37 on 36 DF 

Multiple R-squared:  0.6383, Adj. R-squared:  0.6282  

F-stat: 63.53 on 1 and 36 DF,  p-value: 1.831e-09 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 565.5927    92.5794   6.109 4.97e-07 *** 

HtShoes      -4.2621     0.5391  -7.907 2.21e-09 *** 

--- 

 

Residual standard error: 36.55 on 36 DF 

Multiple R-squared:  0.6346, Adj. R-squared:  0.6244  

F-stat: 62.51 on 1 and 36 DF,  p-value: 2.207e-09 

 

Hamzic. https://dzenanhamzic.com/ 

2016/08/03/linear-regression-with-

multiple-variables-in-matlab/ 
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Model with Both Predictors 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  552.569     95.755   5.771 1.55e-06 *** 

Ht            -5.490      8.918  -0.616    0.542     

HtShoes        1.230      8.938   0.138    0.891     

--- 

 

Residual standard error: 36.87 on 35 DF 

Multiple R-squared:  0.6385, Adj. R-squared:  0.6178  

F-stat: 30.91 on 2 and 35 DF,  p-value: 1.851e-08 

 

…But is there value to including both in a model 

together? Contextually, what is going on with these predictors? 

Explaining the same variance. The two predictors are themselves highly correlated 

Adj r2 went down, and the individual p-value terms are not at all low. No evidence that we gain predictive 

power by including both. 

 

 

• Variable Selection 

o Putting predictors together is like building a team—you don’t 

necessarily want the X best all-around players on your team…you 

want players with different strengths.  

o We care about collinearity among predictors because a good 

multiple regression model should be… 

o Parsimonious: A model that contains as few predictors as possible while explaining a 

reasonable percentage of variance in the Response. 

▪ You don’t want to “spend everything you have” unless it is worth it. 

▪ Adding redundant or difficult variables makes your model 

harder to use and interpret. 

▪ Is the small improvement worth the cost? 

 

o What each component communicates 

▪ P-values for your predictors judge if each predictor 

makes any contribution to the model after including the other predictors/terms already 

present. 

▪ Adj. r2 measures the overall model’s predictive power. Comparing adj. r2 across models 

helps us measure model improvement with new terms. 

▪ The F-test p-value judges if your entire model is performing better than random chance 

(we will largely ignore this in our class!) 
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Practice: Let’s return to the Seat Distance data again. This dataset explored the ideal seat distance for 38 

drivers and captured various physical characteristics. We explored models with 4 predictors (Height, Leg 

length, Age, and Arm length), starting with the strongest and adding each next strongest predictor.  

     Model 1    Model 2             Model 3          Model 4 
           Estimate Pr(>|t|)     
Ht    -4.2650 1.83e-09  

--- 

Multiple R2:  0.6383 

Adjusted R2:  0.6282  

 

     Estimate Pr(>|t|)     

Ht    -2.565  0.0509  

Leg   -6.136  0.1496 

--- 

Multiple R2:  0.6594 

Adjusted R2:  0.6399  

 

     Estimate Pr(>|t|)     

Ht    -2.3254  0.0725  

Leg   -6.7390  0.1099 

Age    0.5807  0.1347 

--- 

Multiple R2:  0.6814 

Adjusted R2:  0.6533  

 

     Estimate Pr(>|t|)     

Ht    -2.0765  0.1431  

Leg   -6.2472  0.1552 

Age    0.7291  0.1584 

Arm   -1.6160  0.6548 

--- 

Multiple R2:  0.6834 

Adjusted R2:  0.6450  

 

Which model seems to be explaining the most variability after adjusting for correlation likely due to 

random chance? 

 

 

 

Arm has a high p-value in the fullest model. Does that mean Arm length is not linearly correlated with 

Preferred Seat Distance? 

 

 

 

 How confident are we that Age makes a unique contribution in Model 3 after including Leg and Height? 

 

 

 

 

Advanced Model Selection Techniques 

✓ While creating and comparing models individually is ok with few predictors, software allows for fast 

and systematic exploration of possible models (e.g., forward, backward, and step-wise selection 

methods). 

✓ In addition to Adjusted r2, there are several other criteria for comparing models, such as AIC, BIC, 

average prediction error, and cross-validation methods.  

✓ See https://book.stat420.org/variable-selection-and-model-building.html  

https://book.stat420.org/variable-selection-and-model-building.html
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Model Diagnostics 

• When doing multiple linear regression, the LINE assumptions still apply. 

o Linearity 

▪ Linear terms make sense for a lot of predictor variables, but a linear fit is not always the 

right fit for every predictor. 

▪ It’s a good idea to plot predictors individually with the response to check. If the fit is 

clearly not linear, it may make sense to complete a “predictor transformation.” 

o Independence of Observations 

▪ No direct change from Simple Linear Regression. 

▪ If the observations are dependent, you may need a different modeling approach 

o Normality of Residuals 

▪ Now that we have multiple predictors, we need a residual plot to visually inspect this. 

We want to see a mirror-like distribution around the residual = 0 line. 

▪ If the residuals aren’t normally distributed about the best fit line, you may need a 

“response transformation.” 

o Equal Variance (Homoscedastic) 

▪ This is also best assessed with the residual plot.  

▪ There should be little to no pattern in the residual plot—no cone shapes or changing 

variability across fitted values. 

▪ If the residuals are heteroscedastic, you may need a “response transformation.” 

Checking the Seat Distance Model 

 

No non-linear trends obvious 

38 independent drivers 

No obvious skew in the residual plot 

Slight open cone, but may be from small sample size 

 

 

 

 

Height    Age              Arm           Leg 
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• Handling Assumption Violations 

o Assumption violations do not mean the regression is ruined! It simply weakens the reliability of 

the results. 

▪ Violations of normality and homoscedasticity mean that our coefficients could be 

slightly biased, and the SE and t-test results may be off. 

o Small violations are to be expected and are ok! 

▪ The larger the sample size, the less effect violations will have on the regression. 

▪ But bigger violations among smaller samples can affect results more noticeably. 

 

• Response Transformations 

o Transforming the variable means taking 

some function of it.  

o Highly skewed response variables are 

sometimes difficult to model without 

adjustment. 

o After a log transformation on the response 

variable, the model diagnostics look great!  
 

 

• Some examples of response transformations include 

✓ A logarithm (log) transformation 

✓ A square root transformation 

✓ A Power transformation (“Box-Cox” Method) 

✓ See https://book.stat420.org/transformations.html  

 

• Predictor Transformations 

o In some cases, a predictor variable may be skewed or distributed asymmetrically. Log 

transformations may be beneficial for a predictor variable as well! 

o Polynomial transformations (e.g., squaring or square rooting a predictor) may also be 

appropriate when the fit doesn’t appear linear. 

Y ~ X       log(Y) ~ X 

Y is a highly skewed variable 

https://book.stat420.org/transformations.html
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Chapter 14 Additional Practice 

Investigation: A hospital research team is studying an experimental medication in 

shortening the period of stiffness (in hours) immediately after a non-invasive hand 

surgery. The research team already knows that the length of time for experiencing 

stiffness is highly dependent on patient’s age. For that reason, they would like to 

see how much using the medication might decrease stiffness duration after 

controlling for age. 71 patients were randomly assigned to either medication or no medication. A simple, 

additive, and interaction model are presented below. 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.49237    0.70095  -3.556 0.000686 *** 

Age          0.15865    0.01363  11.641  < 2e-16 *** 

--- 

Multiple R-squared:  0.6626, Adjusted R-squared:  0.6577  

 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   -1.24535    0.59918  -2.078   0.0414 *   

Age            0.14759    0.01112  13.275  < 2e-16 *** 

MedicationYes -1.39845    0.22560  -6.199 3.81e-08 *** 

--- 

Multiple R-squared:  0.7844, Adjusted R-squared:  0.7781  

 

                   Estimate Std. Error t value Pr(>|t|)     

(Intercept)       -1.488066   0.875901  -1.699    0.094 .   

Age                0.152253   0.016561   9.193 1.73e-13 *** 

MedicationYes     -0.964724   1.157740  -0.833    0.408     

Age:MedicationYes -0.008582   0.022462  -0.382    0.704     

--- 

Multiple R-squared:  0.7849, Adjusted R-squared:  0.7753  

 

After controlling for patient age, is there evidence that the medication decreases stiffness duration?  

 

 

 

 

 

On average, we would say this medication 

decreases stiffness duration by how much? (Is 

this about the same for all ages, or does it 

depend on age?)  
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Investigation: To better understand factors that lead to high obesity rates for U.S. states/territories, 

researchers gathered a large sample of survey data from residents of all 50 U.S. states, DC and Puerto Rico, 

asking about their diet and exercise habits. The researchers collated survey data by territory and general 

demographic information to try to explain the obesity rates in each territory.  

Unit of observation: One state/territory 

Response variable: Obesity rates 

The predictor variables we will focus on here are as follows… 

• no_phys_leisure: percentage of territory residents who report not having a regular physical activity for leisure purposes 

• no_fruit: percentage of territory residents who report eating less than 1 piece of fruit each day on average 

• no_veggie: percentage of territory residents who report eating less than 1 serving of vegetables each day on average 

• income: median household income in the territory 
• age: average age among residents in the state 

• density: population density for the territory (avg number of people per square mile) 

   

 

Which predictors appear to be linearly correlated to obesity rates? 

No phys leisure, no fruit, no veggie, and income 

 

Are there any predictors that might require a variable transformation before it is suitable to model linearly?  

density 

 

In context, why does obesity rate appear to have a negative correlation to income? Does that make sense 

contextually?  

States with higher incomes have lower obesity rates. Poverty may be associated with poor eating habits 
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There is probably a correlation between percent of territory residents who don’t eat fruits and percent who 

don’t eat vegetables. Should we only include one of these predictors in our model, or is there evidence that 

both make a unique contribution? How much more variance do we likely explain with both, as compared to 

just the strongest one solo? 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  6.83336    2.95982   2.309   0.0251 *   
no_fruit     0.54661    0.07151   7.644 5.93e-10 *** 
--- 
Residual SE: 2.629 on 50 degrees of freedom 
Multiple R-squared:  0.5389,  
Adjusted R-squared:  0.5297  
F-stat: 58.43 on 1 and 50 DF,  p-value: 5.926e-10 

 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  12.1145     2.4616   4.921 9.74e-06 *** 
no_veggie     0.7648     0.1083   7.061 4.82e-09 *** 
--- 
Residual SE: 2.739 on 50 degrees of freedom 
Multiple R-squared:  0.4993,  
Adjusted R-squared:  0.4892  
F-stat: 49.85 on 1 and 50 DF,  p-value: 4.824e-09 

 
 Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  6.13584    2.79421   2.196 0.032862 *   
no_fruit     0.34790    0.09868   3.526 0.000927 *** 
no_veggie    0.39459    0.14343   2.751 0.008302 **  
--- 
Residual SE: 2.471 on 49 degrees of freedom 
Multiple R-squared:  0.6006,  
Adjusted R-squared:  0.5843  
F-stat: 36.84 on 2 and 49 DF,  p-value: 1.718e-10 

 

Consider this model that includes no fruit, no veggie, and income. Is there evidence that median territory 

income still contributes as a predictor, even after controlling for percentage of territory residents who don’t 

typically eat fruits or vegetables on a particular day?  

 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)      17.52      6.239   2.808  0.00718 ** 
no_fruit       0.02055     0.1187   1.731  0.08983 .  
no_veggie       0.3899     0.1391   2.803  0.00729 ** 
income      -9.384e-05  4.632e-05  -2.026  0.04838 *  
--- 
Residual standard error: 2.397 on 48 degrees of freedom 
Multiple R-squared:  0.632, Adjusted R-squared:  0.609  
F-statistic: 27.48 on 3 and 48 DF,  p-value: 1.714e-10 
 

 

 

Now consider if we add percentage of residents who don’t typically get physical exercise. What does the p-

value 0.67477 communicate on that line?  

Coefficients: 
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)      1.751e+01  6.293e+00   2.783  0.00774 ** 
no_fruit         2.329e-01  1.361e-01   1.711  0.09373 .  
no_veggie        3.977e-01  1.415e-01   2.810  0.00720 ** 
income          -9.614e-05  4.705e-05  -2.044  0.04661 *  
no_phys_leisure -4.413e-02  1.045e-01  -0.422  0.67477    
--- 
Residual standard error: 2.417 on 47 degrees of freedom 
Multiple R-squared:  0.6334, Adjusted R-squared:  0.6022  
F-statistic:  20.3 on 4 and 47 DF,  p-value: 9.095e-10 

 

1. There is little evidence that no_phys_leisure is linearly correlated with obesity rate 

2. There is little evidence that no_phys_leisure makes a contribution to this model if we already have the 3 

other predictors 

3.  There is little evidence that this model predicts obesity rate beyond what we expect by random chance 
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Chapter 14 Learning Goals 

After this chapter, you should be able to… 

• Define Multiple Linear Modeling as a modeling technique that uses multiple predictors and uses linear 

terms. 

• Recognize that categorical predictors may be used in linear regression by transforming them into 

“Dummy” 0–1 variables. 

• Understand that the “slope” of a dummy variable simply represents the difference in means between 

the 0 and 1 categories. 

• Interpret slopes in the context of multiple predictors (i.e., expected relationship while holding other 

predictors constant) 

• Distinguish between additive and interaction models and contextually make sense of what it means 

when two predictors interact in their prediction of the response 

• Interpret adjusted r2 in context and recognize its advantage over (multiple) r2 when comparing models 

with several predictors. 

• Use an R Model summary to draw information about a model and make judgments 

o Identify the model equation from the estimates column 

o Use the t-test information in an R output to determine the degree of evidence that a particular 

predictor or term is making a unique contribution 

o Identify r2 and adjusted r2 

• Distinguish modeling for an explanation (focusing on the relationship between one predictor and the 

response while including covariates) from modeling for prediction (making the most accurate 

predictions with the predictors I have) 

• Define multicollinearity and recognize situations where it may apply 

• Explain what it means to be parsimonious when choosing a model 

• Develop awareness that model comparison is not an objective process and that there are several 

criteria (e.g., adjusted r2, predictor p-values) one may use to select a model. 

• Use a residual plot to visually recognize obvious violations to normality and equal variance 

• Recognize skewed response variables and skewed predictor variables as often prone to assumption 

violations and understand how variable transformations can be used to address assumption violations 

o Reocgnize log transformation as a common fix for highly skewed variables 
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