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Chapter 14: Multiple Linear Modeling 

Introducing Multiple Predictors 

Investigation: On Palmer Island, biologists are studying the evolutionary 

development of penguin populations. One variable of interest is the bill 

depth (beak depth) of these penguins and explaining the variation they see 

in this variable.  

Unit of Observation: One penguin 

Response variable: Bill depth 

 

Naturally, we would expect penguins 

with a higher body mass to have 

deeper bills. Perhaps that might be a 

helpful predictor 

Predictor: Body mass 

 

 

 

 

 

 

 

 

 

What do you notice about this relationship? Does it follow the trend you would expect? How might we explain 

what we see in the scatterplot? 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   22.0339   0.5036    43.75   <2e-16 *** 

body_mass_kg  -1.1621   0.1177    -9.87   <2e-16 *** 

--- 

 

Residual standard error: 1.744 on 340 degrees of freedom 

Multiple R-squared:  0.2227, Adjusted R-squared:  0.2204  

F-statistic: 97.41 on 1 and 340 DF,  p-value: < 2.2e-16 
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Next, the biologists consider two different penguin species on the island: “Gentoo” and “Adelie.” Perhaps the 

penguins’ species explains differences in bill depth. 

After stratifying by Species, we get the following result 

Table 1. Bill Depths by Species 

 Adelie Gentoo 

Sample Means 18.346 14.982 

Sample SD 1.217 0.981 

 

What do you notice about this relationship? 

 

 

 

• A Linear Model with…A binary predictor? 

o Even without a numeric scale, we could create a linear model using only a binary predictor by 

treating species as a “dummy variable.” 

o Dummy Variable: A variable whose levels have been converted to the values 0 and 1. 

o We use the term “dummy” because the assignment of 0 and 1 to each level is arbitrary and 

carries no contextual meaning. 

 

 

 

ŷ (estimated bill depth) = _____________________*(species) 

 

o The slope of the linear model is equivalent to…__________________________ 

o Also notice that “Gentoo” is listed in the summary output. That means that the category level 

“Gentoo” has been assigned to the value __. 

o We expect the bill depth of a Gentoo penguin to be ________________________ on average 

than if it were an Adelie penguin. 

o Additionally, the t-test for the slope is _________________ to a two-sample t-test for means.  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   18.34636    0.09092  201.79   <2e-16 *** 

speciesGentoo -3.36424    0.13570  -24.79   <2e-16 *** 

--- 

 

Residual standard error: 1.117 on 272 degrees of freedom 

Multiple R-squared:  0.6932, Adjusted R-squared:  0.6921  

F-statistic: 614.7 on 1 and 272 DF,  p-value: < 2.2e-16 
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• Multiple Linear Modeling: Modeling with ________________ predictors using linear terms. 

By creating a model using both species and body 

mass, we can get an even more accurate 

understanding of the response variable, bill depth. 

• Exploring an “Additive Model” 

o An additive model is when the effect 

of one predictor on the response 

remains constant, regardless of the 

value of the other predictor. 

o This means that the additive 

difference in bill depth between each 

species remains about the same, 

regardless of the penguin’s body mass.  

 

 

 

 

 

 

o Interpreting the Additive Model Coefficients 

o When fitting models with multiple predictors, the slope values represent the 

relationship of one predictor with the response while holding the other predictor(s) 

constant.  

For every one kg increase in ____________, we expect ____________ to be _____________ higher on 

average, if comparing two penguins of the same _____________. 

For penguins of ____________________ we expect ____________to be ______________ lower on 

average, if comparing two penguins of the same _____________. 

�̂� = 12.9261 + 1.4647(body mass) – 5.3787(species*) 
*Where species = 0 if “Adelie” and 1 if “Gentoo.” 

Practice: What would be the model predicted bill depth of a penguin with body mass of 3.8kg and of the 

species Adelie? 

 

 

Coefficients: 

         Estimate Std. Error t value Pr(>|t|)     

(Intercept)    12.9261     0.4134   31.27   <2e-16 *** 

body_mass_kg    1.4647     0.1101   13.31   <2e-16 *** 

speciesGentoo  -5.3787     0.1846  -29.13   <2e-16 *** 

--- 

Residual standard error: 0.8704 on 271 degrees of freedom 

Multiple R-squared:  0.8145, Adjusted R-squared:  0.8131  

F-statistic: 594.9 on 2 and 271 DF,  p-value: < 2.2e-16 
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• Exploring an “Interaction Model” 

o An interaction model is when one predictor moderates the other predictor’s effect on the 

response. The effect of one predictor on the response depends on another. 

Investigation: We know that sunlight levels have a positive effect on tomato plant growth. We also know that 

higher soil bacteria levels tend to increase tomato plant growth as well. A biologist has a theory that more 

sunlight is the catalyst for bacteria’s effect on tomato plant growth. Does the data support that? 

Simple Models 

❖ Simple models use only one predictor. In each case, we can see that bacteria density levels and 

sunlight levels are individually associated with larger plant heights.  

 

Additive Model 

❖ Here, we’re creating a model that assumes each 

predictor works ___________________. 

❖ The slope relating bacteria density to plant 

height is independent of sunlight levels, and the 

effect of sunlight levels on growth is independent 

of the bacteria density level. 

Interaction Model  

❖ With an interaction model, we allow the slopes 

to be different for each group. The predictors are 

dependent.  

In context, what does the interaction model tell us?  
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Simple Model (for bacteria) 
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.470371   0.085991   5.470 3.45e-07 *** 

bacteria    0.040388   0.007464   5.411 4.45e-07 *** 

--- 

Residual standard error: 0.2856 on 98 degrees of freedom 

Multiple R-squared:   0.23, Adjusted R-squared:  0.2222  

F-statistic: 29.28 on 1 and 98 DF,  p-value: 4.449e-07 

 

Write the Model Equation:  
 

 

 

Additive Model (Intercept Adjustment) 
 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.338001   0.057818   5.846 6.77e-08 *** 

sunlightFull 0.431144   0.037966  11.356  < 2e-16 *** 

bacteria     0.032731   0.004962   6.597 2.22e-09 *** 

--- 

Residual standard error: 0.1881 on 97 degrees of freedom 

Multiple R-squared:  0.6695, Adjusted R-squared:  0.6627  

F-statistic: 98.23 on 2 and 97 DF,  p-value: < 2.2e-16 

 

Write the Model Equation:  

 

 

Interaction Model (Intercept and Slope Adjustment) 
 

Coefficients: 

                      Estimate Std. Error t value Pr(>|t|)     

(Intercept)           0.560837   0.077834   7.206 1.31e-10 *** 

sunlightFull          0.030529   0.107014   0.285 0.776041     

bacteria              0.011194   0.007131   1.570 0.119779     

sunlightFull:bacteria 0.037151   0.009366   3.967 0.000141 *** 

--- 

Residual standard error: 0.1752 on 96 degrees of freedom 

Multiple R-squared:  0.716, Adjusted R-squared:  0.7071  

F-statistic: 80.68 on 3 and 96 DF,  p-value: < 2.2e-16 
 

Write the Model Equation:  
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Inference for Additive and Interaction models 

Investigation Revisited: Consider the biologist’s original question. How would we use 

the scatterplots and models to address his original question? If more sunlight is truly a 

catalyst to bacteria’s effect on plant growth, then what should we notice about the 

relationship between growth in bacteria in full sunlight compared to partial sunlight? 

 

 

 

Learning from the Interaction model  

Null hypothesis for interaction term:  

P-value from interaction term:  

Conclusion:  

 

 

Learning from the Additive model: IF there were no evidence for an interaction term, we could instead 

judge if we should keep both predictors as independent, additive terms.  

Is there evidence that sunlight contributes while controlling for bacteria levels? 

 

 

Is there evidence that bacteria levels contributes while controlling for sunlight levels? 

  

 

Adjusted R squared—how much variability are we explaining with this model? 

o When adding predictors, multiple r2 will only increase.  

o Adjusted r2 is the variability explained in the response variable after adjusting for…  

 

o In cases where the new term performs worse than random chance, adj r2 __________! 

After adjusting for expected correlation due to random chance, how much variability do we estimate is 

explained by including the interaction term? 
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Reflection Questions 

14.1. What is a dummy variable in a statistical model? Why do we call it that? 

 

 

 

14.2. What does it mean to “control for” something in a model? 

 

 

 

 

14.3. In the model involving plant growth, what did we mean when we said that the two predictors (bacteria 

and soil temperature) contributed in interaction to predict growth? What would it mean or look like if the two 

predictors contributed additively, but not in interaction, for modeling plant growth? 

 

 

 

 

14.4. Consider a study where students are given a day to prepare for a quiz on a topic they know nothing 

about. Half are assigned to use “well-designed” study materials while the other half are assigned to use 

“poorly-designed” study materials. In addition, students can study for whatever length of time they want, and 

they report their total study time when they come in to take the test. What would it mean if the researchers 

found an interaction between material type and study time on students’ quiz scores? What might that 

scatterplot look like? 

 

 

 

 

 

 

14.5. What is the difference between adjusted r squared and regular (multiple) r squared? Why is it often 

more helpful to compare adjusted r squared when comparing models that may have different numbers of 

predictors? 

 

 

 

 

 



Chapter 14: Multiple Linear Modeling  

 

Findley (2025). University of Illinois Urbana-Champaign        Page 170 

 

Adding more Complexity!  

• More dimensions 

o Even though we can’t easily see them, we can add more 

numeric dimensions to our model.  

o You can imagine this idea with 2 numeric predictors, but 

mathematically, we can continue adding more 

dimensions. 

 

• Multicollinearity 

o Even though a set of predictors may have individual 

correlation with the response variable, there may be a 

multicollinearity issue. 

o Multicollinearity: When multiple predictor variables are, 

themselves, highly correlated and explain mostly the same variance in the response variable. 

o Adding predictors that don’t add any additional predictive power to a model can create 

_______________ issues.  

o It may also make it more difficult to interpret the slopes of other predictors.  

Seat Distance: Consider a model to estimate someone’s preferred distance away from the steering wheel 

while driving (distance from wheel to hip center) based on other physical measures. Two predictor variables 

we have in our data are Height, and Height with Shoes. We can see that each individually are correlated with 

seat distance. 

 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -556.2553   90.6704   6.135 4.59e-07 *** 

Height       4.2650      0.5351   7.970 1.83e-09 *** 

--- 

Residual standard error: 36.37 on 36 DF 

Multiple R-squared:  0.6383, Adj. R-squared:  0.6282  

F-stat: 63.53 on 1 and 36 DF,  p-value: 1.831e-09 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -565.5927   92.5794   6.109 4.97e-07 *** 

HeightShoes   4.2621     0.5391   7.907 2.21e-09 *** 

--- 

 

Residual standard error: 36.55 on 36 DF 

Multiple R-squared:  0.6346, Adj. R-squared:  0.6244  

F-stat: 62.51 on 1 and 36 DF,  p-value: 2.207e-09 

 

 

 

Hamzic (2016). 

https://dzenanhamzic.com/%202016/08/03/linear-regression-with-multiple-variables-in-matlab/
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Model with Both Predictors 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -552.569    95.755   5.771 1.55e-06 *** 

Height        5.490      8.918    0.616    0.542     

HeightShoes  -1.230      8.938   -0.138    0.891     

--- 

 

Residual standard error: 36.87 on 35 DF 

Multiple R-squared:  0.6385, Adj. R-squared:  0.6178  

F-stat: 30.91 on 2 and 35 DF,  p-value: 1.851e-08 

 

What do the predictor p-values communicate to us? 

 

 

How did adjusted r2 change? What does that communicate to us? 

 

 

 

• Variable Selection 

o Putting predictors together is like building a team—you don’t 

necessarily want the X best all-around players on your team…you 

want players with different strengths.  

o We care about collinearity among predictors because a good 

multiple regression model should be… 

o Parsimonious: A model that contains as _______ predictors as possible while explaining a 

reasonable percentage of variance in the Response. 

▪ You don’t want to “spend everything you have” unless it is worth it. 

▪ Adding redundant variables (e.g., collinear predictors) 

makes your model more complex and risks overfitting to 

the sample more than the variables in general. 

▪ Is the small improvement worth the cost? 

 

o What each component communicates 

▪ P-values for your predictors judge if each predictor makes any contribution to the 

model after including the other predictors/terms already present. 

▪ Adj. r2 measures the overall model’s predictive power while naturally penalizing models 

with more predictors.  

▪ The F-test p-value judges if your entire model is performing better than random chance.  

• In this class, we’ll instead focus on predictor p-values for individual predictor 

contributions and adj. r squared for overall model performance. 
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Practice: Let’s return to the Seat Distance data again. This dataset explored the ideal seat distance for 38 

drivers and captured various physical characteristics. We explored models with 4 predictors (Height, Leg 

length, Age, and Arm length), starting with the strongest and adding each next strongest predictor.  

     Model 1    Model 2             Model 3          Model 4 
           Estimate Pr(>|t|)     
Ht    4.2650 1.83e-09  

--- 

Multiple R2:  0.6383 

Adjusted R2:  0.6282  

 

     Estimate Pr(>|t|)     

Ht    2.565  0.0509  

Leg   6.136  0.1496 

--- 

Multiple R2:  0.6594 

Adjusted R2:  0.6399  

 

     Estimate Pr(>|t|)     

Ht    2.3254  0.0725  

Leg   6.7390  0.1099 

Age  -0.5807  0.1347 

--- 

Multiple R2:  0.6814 

Adjusted R2:  0.6533  

 

     Estimate Pr(>|t|)     

Ht    2.0765  0.1431  

Leg   6.2472  0.1552 

Age  -0.7291  0.1584 

Arm   1.6160  0.6548 

--- 

Multiple R2:  0.6834 

Adjusted R2:  0.6450  

 

If my criteria is to choose the model that explains the most variability in the response after adjusting 

for correlation likely due to random chance, which model would we prefer? 

 

 

If my criteria is to choose the model that only includes predictors with p-values below 0.10, which 

model would I choose? 

 

 

Which of those two criteria happens to be more parsimonious in this situation? 

 

 

Arm has a high p-value in the fullest model. Does that mean Arm length is not linearly correlated with 

Preferred Seat Distance? 

 

 

 

Topics Beyond on Course: Model Selection Techniques 

✓ While creating and comparing models individually is ok with few predictors, software allows for fast 

and systematic exploration of possible models (e.g., forward, backward, and step-wise selection 

methods). 

✓ In addition to Adjusted r2, there are several other criteria for comparing models, such as AIC, BIC, and 

average prediction error using training/test data splits.  

✓ See this Applied Statistics with R textbook if you’d like to learn more!  

https://book.stat420.org/variable-selection-and-model-building.html
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Model Diagnostics 

• When doing multiple linear regression, the LINE assumptions still apply. 

o Linearity 

▪ Linear terms make sense for a lot of predictor variables, but a linear fit is not always the 

right fit for every predictor. 

▪ It’s a good idea to plot predictors individually with the response to check. If the fit is 

clearly not linear, it may make sense to complete a “predictor transformation.” 

o Independence of Observations 

▪ No direct change from Simple Linear Regression. 

▪ If the observations are dependent, you may need a different modeling approach 

o Normality of Residuals 

▪ Now that we have multiple predictors, we need a residual plot to visually inspect this.  

▪ A residual plot will compare the size of a data point’s residual on the y axis against the 

model estimated value on the x-axis. 

▪ We want to see a ________________ distribution around the residual = 0 line. 

▪ If the residuals aren’t normally distributed about the best fit line, you may need a 

“response transformation.” 

o Equal Variance (Homoscedastic) 

▪ This is also best assessed with the residual plot.  

▪ There should be little to no pattern in the residual plot—no cone shapes or changing 

variability across fitted values. 

▪ If the residuals are heteroscedastic, you may need a “response transformation.” 

Checking the Seat Distance Model 
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• Handling Assumption Violations 

o Assumption violations do not mean the regression is ruined! It simply weakens the 

____________ of the results. 

▪ Violations of normality and homoscedasticity mean that our coefficients could be 

slightly biased, and the SE and t-test results may be off. 

o Small violations are to be expected and are ok! 

▪ The ____________ the sample size, the less effect violations will have on the regression. 

▪ But bigger violations among smaller samples can affect results more noticeably. 

 

• Response Transformations 

o Transforming the variable means taking 

some function of it.  

o _________________ response variables 

are sometimes difficult to model without 

adjustment. 

o After a log transformation on the response 

variable, the model diagnostics look much 

better.   
 

 

 

 

Topics Beyond our Course: Predictor Transformations 

✓ In some cases, a predictor variable may be skewed or distributed asymmetrically. Log 

transformations may be beneficial for a predictor variable as well! 

✓ Polynomial transformations (e.g., squaring or square rooting a predictor) may also be 

appropriate when the fit doesn’t appear linear. 

 

Y ~ X       log(Y) ~ X 

Y is a highly skewed variable 
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Reflection Questions 

14.6. Consider if we looked at a model summary output with two predictors. Predictor A has a very low p-

value, while Predictor B’s p-value is not very low at all. What does this result tell us? Would it be fair to say 

that Predictor B is likely not linearly correlated with the response variable? 

 

 

 

 

 

14.7. What does it mean to value parsimony when building a model? What is a disadvantage that might arise 

from ignoring parsimony? 

 

 

 

 

 

 

14.8. Is there one best way to select a model?  

 

 

 

 

 

 

14.9. What is a residual plot? If the response variable for your model is naturally a skewed variable, how might 

you use a residual plot to check whether assumptions for linear regression are met? 
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Chapter 14 Additional Practice (Videos available in the Ch 14 module on Canvas!) 

Investigation: A hospital research team is studying an experimental medication in 

shortening the period of stiffness (in hours) immediately after a non-invasive hand 

surgery. The research team already knows that the length of time for experiencing 

stiffness is highly dependent on patient’s age. For that reason, they would like to 

see how much using the medication might decrease stiffness duration after 

controlling for age. 71 patients were randomly assigned to either medication or no medication. A simple, 

additive, and interaction model are presented below. 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.49237    0.70095  -3.556 0.000686 *** 

Age          0.15865    0.01363  11.641  < 2e-16 *** 

--- 

Multiple R-squared:  0.6626, Adjusted R-squared:  0.6577  

 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   -1.24535    0.59918  -2.078   0.0414 *   

Age            0.14759    0.01112  13.275  < 2e-16 *** 

MedicationYes -1.39845    0.22560  -6.199 3.81e-08 *** 

--- 

Multiple R-squared:  0.7844, Adjusted R-squared:  0.7781  

 

                   Estimate Std. Error t value Pr(>|t|)     

(Intercept)       -1.488066   0.875901  -1.699    0.094 .   

Age                0.152253   0.016561   9.193 1.73e-13 *** 

MedicationYes     -0.964724   1.157740  -0.833    0.408     

Age:MedicationYes -0.008582   0.022462  -0.382    0.704     

--- 

Multiple R-squared:  0.7849, Adjusted R-squared:  0.7753  

 

After controlling for patient age, is there evidence that the medication decreases stiffness duration?  

 

 

 

 

 

On average, we would say this medication 

decreases stiffness duration by how much? (Is 

this about the same for all ages, or does it 

depend on age?)  
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Investigation: To better understand factors that lead to high obesity rates for U.S. states/territories, 

researchers gathered a large sample of survey data from residents of all 50 U.S. states, DC and Puerto Rico, 

asking about their diet and exercise habits. The researchers collated survey data by territory and general 

demographic information to try to explain the obesity rates in each territory.  

Unit of observation:  

Response variable:  

The predictor variables we will focus on here are as follows… 

• no_phys_leisure: percentage of territory residents who report not having a regular physical activity for leisure purposes 

• no_fruit: percentage of territory residents who report eating less than 1 piece of fruit each day on average 

• no_veggie: percentage of territory residents who report eating less than 1 serving of vegetables each day on average 

• income: median household income in the territory 
• age: average age among residents in the state 

• density: population density for the territory (avg number of people per square mile) 

   

 

Which predictors appear to be linearly correlated to obesity rates? 

 

 

Are there any predictors that might require a variable transformation before it is suitable to model linearly?  

 

 

In context, why does obesity rate appear to have a negative correlation to income? Does that make sense 

contextually?  
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There is probably a correlation between percent of territory residents who don’t eat fruits and percent who 

don’t eat vegetables. Should we only include one of these predictors in our model, or is there evidence that 

both make a unique contribution? How much more variance do we likely explain with both, as compared to 

just the strongest one solo? 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  6.83336    2.95982   2.309   0.0251 *   
no_fruit     0.54661    0.07151   7.644 5.93e-10 *** 
--- 
Residual SE: 2.629 on 50 degrees of freedom 
Multiple R-squared:  0.5389,  
Adjusted R-squared:  0.5297  
F-stat: 58.43 on 1 and 50 DF,  p-value: 5.926e-10 

 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  12.1145     2.4616   4.921 9.74e-06 *** 
no_veggie     0.7648     0.1083   7.061 4.82e-09 *** 
--- 
Residual SE: 2.739 on 50 degrees of freedom 
Multiple R-squared:  0.4993,  
Adjusted R-squared:  0.4892  
F-stat: 49.85 on 1 and 50 DF,  p-value: 4.824e-09 

 
 Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  6.13584    2.79421   2.196 0.032862 *   
no_fruit     0.34790    0.09868   3.526 0.000927 *** 
no_veggie    0.39459    0.14343   2.751 0.008302 **  
--- 
Residual SE: 2.471 on 49 degrees of freedom 
Multiple R-squared:  0.6006,  
Adjusted R-squared:  0.5843  
F-stat: 36.84 on 2 and 49 DF,  p-value: 1.718e-10 

 

Consider this model that includes no fruit, no veggie, and income. Is there evidence that median territory 

income still contributes as a predictor, even after controlling for percentage of territory residents who don’t 

typically eat fruits or vegetables on a particular day?  

 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)      17.52      6.239   2.808  0.00718 ** 
no_fruit       0.02055     0.1187   1.731  0.08983 .  
no_veggie       0.3899     0.1391   2.803  0.00729 ** 
income      -9.384e-05  4.632e-05  -2.026  0.04838 *  
--- 
Residual standard error: 2.397 on 48 degrees of freedom 
Multiple R-squared:  0.632, Adjusted R-squared:  0.609  
F-statistic: 27.48 on 3 and 48 DF,  p-value: 1.714e-10 
 

 

 

Now consider if we add percentage of residents who don’t typically get physical exercise. What does the p-

value 0.67477 communicate on that line?  

Coefficients: 
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)      1.751e+01  6.293e+00   2.783  0.00774 ** 
no_fruit         2.329e-01  1.361e-01   1.711  0.09373 .  
no_veggie        3.977e-01  1.415e-01   2.810  0.00720 ** 
income          -9.614e-05  4.705e-05  -2.044  0.04661 *  
no_phys_leisure -4.413e-02  1.045e-01  -0.422  0.67477    
--- 
Residual standard error: 2.417 on 47 degrees of freedom 
Multiple R-squared:  0.6334, Adjusted R-squared:  0.6022  
F-statistic:  20.3 on 4 and 47 DF,  p-value: 9.095e-10 

 

1. There is little evidence that no_phys_leisure is linearly correlated with obesity rate 

2. There is little evidence that no_phys_leisure makes a contribution to this model if we already have the 3 

other predictors 

3.  There is little evidence that this model predicts obesity rate beyond what we expect by random chance 
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