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Chapter 13: Simple Linear Modeling 

Building a Model 

• What is modeling? 

o In statistics, we might often tackle a multivariate investigation by building a model 

o Modeling is the process of making predictions for a response variable based on one or more 

predictor variables we might have access to. 

o Models are particularly helpful when we are working with a numeric predictor variable,  

as we can sensibly relate our predictor and response variable together in the form of  

an equation. 

What kinds of relationship might we notice when modeling the relationship between two numeric variables? 

Linear Relationships 

As the predictor value increases, the 

response value tends to change at a  

constant rate. 

 

 

 

Non-Linear relationships 

As the predictor value increases, the 

response value tends to change at a  

non-constant rate. 

 

 

 

No Relationship 

As the predictor value increases, the 

response value expresses no discernible 

trend 

 

 

For each scatterplot, identify whether you think the relationship 

looks linear, non-linear, or if there is no discernible relationship. 
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Investigation: A vendor sells candles at maker’s market. She’d like to better understand how the number of 

candles she sells might relate to the price she sets on each candle. She decides to collect data on this for 5 

weekends in a row. Each week, she changes the price to a different value and records the number of candles 

she sells. The data is presented below. 

 

Unit of observation: One weekend 

Response variable: Number of candle sales (numeric) 

Predictor variable: Price (numeric) 

 

 

 

 

 

 

 

 

Modeling a Linear Relationship 

• In our case, this model appears to be linear—in fact, this data here provides a perfectly linear fit! 

• But how do we represent this model with an equation? 

o Slope tells you the rate at which the response variable changes with respect to unit changes in the 

predictor.  

▪ For every one unit increase in (predictor), we expect (response) to be (slope) units higher / 

lower on average. 

Let’s fill it in and interpret the slope for this example in context: 

For every one unit increase in price, we expect sales to be 8 units higher / lower on average. 

 

o Intercept provides you a starting point/positional reference—the model’s approximation for the 

response value when the predictor variable is at 0. 

Equation of a line: y = 74 – 8x 

 

Practice: If the price were $4.50, then according to this model, we’d expect the # of weekly sales to be what? 

 

 

Price (X) Sales (Y) 

$4.00 42 

$5.00 34 

$6.00 26 

$7.00 18 

$8.00 10 

Intercept Slope 
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Investigation Revisited: Now consider if the store owner had collected data for 50 weekends. For each of the 

five price points she explored, she had 10 independent weekends of data at that price point. 

Why would sales still vary on weeks where the price was 

the same?  

There are other things that must affect sales besides the 

price! 

Weather, crowd size, time of year, variability of who 

comes and shows interest 

 

 

• Grappling with Uncertainty 

o When we had a perfect linear relationship, we could build a model that predicted Y from X with 

perfect accuracy. We used simple mathematics to find that equation. 

o When a relationship is not perfect, we now have uncertainty in our ability to predict Y from X. We 

now need to use statistics to find this equation and estimate our uncertainty! 

o One common strategy in this case is to model the mean of the Y at each value of X. This method is 

known as linear regression since we are regressing the relationship toward the mean! 

There are two sources of uncertainty when we do this! 

1) Since these two variables are not in a perfect relationship, data points will vary around the mean at each 

cross-section of the predictor. 

2) Our best fit line can only estimate the mean at these cross-sections since we only have a sample of data.  

 

The Equation for the Best Fit Line:  ŷ = b0 + b1x 
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Modeling a Linear Relationship with Uncertainty 

Mini investigation: Let’s say that we had asked 18 students to take a language proficiency exam. The first part 

of the exam (scored out of 20 points) involves a reading/comprehension portion. The second part of the exam 

(also scored out of 20 points) involves an interactive speaking/listening activity with a native speaker who 

scores each individual using a rubric. We’d like to use this data to see how well someone’s 

reading/comprehension score might predict their speaking/listening score. 

Each plot below represents the same data, but with two different potential lines of best fit.  

 

ŷ = -4.69 + 1.28x ŷ = 3.53 + 0.60x  
 

Which line do you think best represents the relationship? And why? 

 

 

Answers will vary. Left line fits several individual data points (About 4 of them) better, but it does seem to 

have a lot more error for more of the data points. 

 

The line on the right seems to have lower error on average 

 

Potentially draw on the point that we don’t want to just fit our sample data closely, but rather to project the 

general relationship. That’s what’s useful in the larger scheme of things! 
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Read/Try on your own 

Residuals and the Least Squares Criterion 

• When we fit a model, every data point likely has at least some residual error in relation to the model. 

• A Residual represent the distance between an actual observation of the response and a prediction of 

the response based on a model equation. 

• Let’s now introduce some symbolism to showcase this uncertainty! 

o 𝐲𝒊 is an actual response value paired up with 𝐱𝒊 

▪ Perhaps one student scored a 11 on reading comprehension (x)and 13 on 

speaking/listening (y), making their data point (11,13) 

o 𝐲̂𝐢 represents the model predicted response value given that 𝐱𝒊 is the observed predictor. 

▪ For a reading comprehension score of 14, our model predicts a speaking/listening score 

of 3.53 + 0.60(11) = 10.13 score 

o We calculate the residual for observation i as yi - 𝐲̂𝐢 

Practice: What is the model’s residual error in predicting the score of this student? 

 

 

• How do we use residuals to choose a model equation? 

o There is not one “correct” method for choosing a 

model equation, but a common approach is the 

“Ordinary Least Squares” method which relies on the 

least-squares criterion. 

o The least squares criterion selects the line that 

minimizes the sum of the squared residuals (this is 

mathematically advantageous in comparison to 

minimizing the sum of absolute value deviations).  

 

 

 

 

PhET Least Squares Regression: 

https://phet.colorado.edu/sims/html/least-

squares-regression/latest/least-squares-

regression_en.html 

Digging Deeper 

Determining the equation that minimizes squared residuals involves calculus. If you’re interested to 

learn more, check out Chapter 7 of this book on applied statistics by my colleague Dr. Dave Dalpiaz! 

https://book.stat420.org/simple-linear-regression.html 

 

https://phet.colorado.edu/sims/html/least-squares-regression/latest/least-squares-regression_en.html
https://phet.colorado.edu/sims/html/least-squares-regression/latest/least-squares-regression_en.html
https://phet.colorado.edu/sims/html/least-squares-regression/latest/least-squares-regression_en.html
https://book.stat420.org/simple-linear-regression.html
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Linear Regression Inference – Judging the Model’s Prediction Accuracy 

Investigation: Low-density lipoprotein (LDL) Cholesterol is often referred to as “bad cholesterol” that can 

create blood clots in your blood vessels. Doctors have noted an important association between weight levels 

and LDL levels. However, weight is definitely not the only thing that explains different cholesterol levels. We 

collected data from 92 adult males to see how well we could predict LDL from weight. 

How accurately we can estimate one’s LDL cholesterol level when using their weight as a predictor? 

• Variance before building the model 

o Our response variable, LDL cholesterol level, varies from person to 

person. Without a predictor, our best guess for someone’s LDL level 

would just be the mean LDL level in our sample. 

ŷ (estimated LDL) = 132.1 

So how much error should we expect using this approach? 

o The standard deviation of the response variable is 𝐬𝐲 = 27.1, which 

we hope is a reasonable estimate of the parameter σy 

▪ This represents the expected deviation of a randomly chosen individual from the mean. 

o More commonly, we’ll use the variance of the response variable 𝐬𝐲
𝟐 = 734.41, which we hope is 

a reasonable estimate of the parameter σy
2 (remember variance is mathematically simpler!) 

 

• Variance remaining after building the model 

o Now, let’s consider the accuracy of a model that makes a more targeted prediction of one’s LDL 

cholesterol level based on their weight. 

ŷ (estimated LDL) = 5.25 + 0.65(weight) 

o Next, we need a way to measure the 

variation in our prediction errors 

using ŷ rather than 𝑦̅.  

o After fitting the model, we find the 

residuals to have a standard 

deviation of 𝐬𝐞 = 18.78 

▪ We hope is a good estimate for σe 

o We can also represent this in terms of the residual variance as 𝐬𝐞
𝟐 = 352.86 

▪ We hope this is a reasonable estimate of the parameter σe
2. 

Practice: How might we use these values to estimate the improved accuracy in our predictions by using this 

model in comparison to simply using the mean LDL level? 

Some may simply subtract one value from the other. Some may think about percentage of variance/SD left. 
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• Coefficient of Determination: r2 

o The coefficient of determination (abbreviated “r2”) is… the proportion of total variability in the 

response variable that is “explained” by this predictor (or by these predictors/this model) 

 

 

▪ sy
2 measures the total variance in the response variable 

▪ se
2 specifically measures the residual variance (the leftover variance) after applying our 

model. 

o We could calculate sy
2 - se

2  measures the variance that is explained by our model. But this raw 

difference is not particularly helpful. 

o Let’s go one step further and find what proportion of the total variance we have explained by 

this model by finding this difference as a ratio of the total. This is an approximate formula for r2 

that doesn’t account for degrees of freedom adjustments. Software can take care of that! 

r2 ≈ 
𝐬𝐲

𝟐− 𝐬𝐞
𝟐 

𝐬𝐲
𝟐  

Let’s calculate the r2 for our LDL cholesterol model. 

 

 

Which statement is correctly interpreting what we found? 

1. Approximately 52% of these men have LDL cholesterol levels above the mean 

2. Mens’ LDL cholesterol levels are approximately  52% of their weight 

3. We can reduce the variance in our prediction of LDL cholesterol by approximately 52% when using 

weight as a predictor 

4. The probability of observing a linear association at least this strong by random chance is 

approximately 52 % 

 

Interpolation and Extrapolation 

• Interpolation: Predicting Y based on an X value within the range of X values observed 

• Extrapolation: Predicting Y based on an X value outside of the range of X values observed. 

o While making predictions immediately outside the 

range is generally safe, making predictions well out are 

often unreliable. 

Consider the candle vendor from earlier. What happens to our model 

estimates when we plug in a price of $10? 

We can’t have negative sales! 
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Linear Regression Inference – Judging the Model’s Coefficient Accuracy 

Investigation: A nurse is looking at the records of patients who were admitted to the Intensive Care Unit (ICU) 

at his hospital. He wants to know whether patients’ heart rate (bpm) upon arrival might be correlated with 

their systolic blood pressure reading. He plots the data and finds a sample slope of b1 = -0.069.  

Unit of observation: One person admitted to ICU 

Response variable: Sysolic BP 

Predictor variable: Heart rate 

 

But does that suggest heart rate is correlated with 

systolioc BP? Let’s explore this question with a 

permutation test! 

• Permutation Test for Linear Regression 

o If there were truly no relationship between 

one’s heart rate and systolic BP, then we 

could redistribute the heart rate values 

randomly to each patient. 

What is our null and alternative hypothesis? Let’s phrase it in terms of β1 

H0: β1 = 0 

HA: β1 ≠ 0 

Go to the Lock5 StatKey site linked here:  

- https://www.lock5stat.com/StatKey/randomization_2_quant/randomization_2_quant.html 
- From the drop-down data menu, choose “ICU Admissions” 

- Change the randomization dotplot from “Correlation” to “Slope” 

Play around and explore for a bit! Why do the sample slopes tend to congregate around 0? 

0, since we are permuting the X values randomly, there is no correlation. Equally likely to be positive or 

negative slope by chance. 

 

Generate several thousand permutations. Then check “Two Tail.” Click one of the x-axis labels to customize 

the range to our own sample slope of -0.069. 

How often do we see sample slopes at least as unusual as ours by random chance? How might that help us 

answer our investigation? 

About 32.6% of the time (16.3% each direction). This tells us we don’t have evidence of a correlation. Could 

easily be random chance.  

 

https://www.lock5stat.com/StatKey/randomization_2_quant/randomization_2_quant.html
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• The Standard Error for b1 

o The Standard Error for b1 (σb1 or SEb1) is the expected deviation of b1 from β1. 

σb1 = 
 σe

σx√n
  ≈ 

 Se

Sx√n−2
 

▪ σe represents the true standard deviation in the residuals.  

▪ σx represents the true standard deviation in the predictor (X) variable. 

▪ n represents the sample size 

Note: When using se and sx we lose 2 degrees of freedom rather than just 1.  

o We won’t be calculating this one by hand in this class—we’ll just start from the value and go 

from there! 

▪ Notice in our data investigation that the Standard error is approximated in the 

simulated environment. 

▪ It may vary depending on your simulations, but it should be around…0.071 

• Parametric Testing/Interval Options 

o When the distribution of possible b1’s is normally 

distributed about β1, we can take a shortcut to 

simulations and simply complete a t-test! 

▪ Z-test is also fine in larger sample contexts, 

like df > 100 

o Likewise, if we simply wish to estimate a range of 

plausible values for β1, we could complete a t-interval 

using b1 as our point estimate. 

 

Investigation revisited: Let’s now compare our simulated p-value to what we might get using a z-test. Assume 

our Null Model is normally distributed with a mean of 0 and a standard deviation of 0.071. 

What is the standardized position (z-score) of our sample slope in this null model? 

 

 

Let’s use the Normal Distribution Calculator to find the p-value: https://istats.shinyapps.io/NormalDist/  

 

 

Finally, let’s report a 95% confidence interval for β1 as well. 

Point Estimate: 

SE: 

Margin of error:  

 

β1 -1.96 SE 1.96 SE 

95% of all  

b1 values 

https://istats.shinyapps.io/NormalDist/
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Read/Try on your own 

Reading R Output 

• When using R to run a linear model, you can find several important values in the model summary. 

o Use the estimate column to identify your model equation 

o You can find the standard error, t-score, and p-value of your slope coefficient by tracing down 

the predictor line. 

o Use “Multiple R-squared” to identify the r2 (We will discuss “Adjusted” R-squared later!) 

 

 

Example: The following data represents the linear model created when we use the length of a mammal’s sleep 

cycle (predictor) to estimate the total sleep that a mammal might get on average (response)  

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   13.528      1.028  13.154 5.44e-14 *** 

sleep_cycle   -5.374      1.824  -2.946  0.00617 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 3.643 on 30 degrees of freedom 

Multiple R-squared:  0.2244, Adjusted R-squared:  0.1986  

F-statistic:  8.68 on 1 and 30 DF,  p-value: 0.006169  

 

 

Based on this output, we can identify the model equation as:  

 

ŷ (estimated sleep total) = 13.528 – 5.374(sleep cycle) 

 

 

 

For every one hour increase in sleep cycle, we expect sleep total to be 5.374 units higher / lower on average. 

 

 

 

The expected error in our slope coefficient is 1.824, but we’re still very confident there is a non-zero slope 

given that the p-value for the t-test is 0.00617. 

 

 

We estimate that we can reduce the variance in our prediction of a mammal’s sleep total by approximately 

22.44% when using their sleep cycle length as a predictor. 
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• Watching for Influential Points 

o “Outliers” are data points far removed from the consensus data.  

o In regression, we should be cautious of a special type of outlier: an “influential point.” 

o An influential point is an outlier that can have a VERY strong effect on the best fit line, often 

making an otherwise “insignificant” relationship look “significant.”  

o In general, influential points will be outliers that exist near the corners of the graph. 

o What should we do with influential points? 

▪ Assuming the data point was recorded correctly, consider running an analysis with and 

without that point.  

▪ Differentiate claims about the consensus data (general trends) from claims about all 

data (how variable that trend is). 

▪ Consider examining that special case 

in more detail. Why does it stand out 

from the rest? 

o Testing for influential points 

▪ At a more advanced level, data 

analysts might calculate the “Cook’s 

Distance” to determine how large it’s 

influence is on the model. 

 

 

 

Practice: Empathy means being able to understand what others feel, but does increased brain activity signal 

increased empathy? 16 women watched their partner get shocked in a controlled environment, and their 

brain activity was measured. They also completed an empathy test. The results are shown below. Is there 

evidence to suggest that there is a linear relationship between brain activity and empathy score for female 

partners?  

Coefficients: 

              Estimate Std. Error t value P-value     

(Intercept)   40.674   6.731      6.042   3.03e-05 *** 

Brain (slope) 34.856   15.500     2.249   0.0412 *   

--- 

 

Residual standard deviation: 16.52 on 14 df 

R-squared: 0.2654, Adjusted R-squared:  0.2129  

 

P-value approximately 4%, suggesting strong evidence of at least some linear relationship. R squared is 26% 
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What happens if we remove that one point in the top right corner?  

Coefficients: 

              Estimate Std. Error t value P-value     

(Intercept)   44.008   5.183      8.491   1.16e-06 *** 

Brain (slope) 16.334   12.928     1.263   0.229     

--- 

 

Residual standard deviation: 12.49 on 13 df 

R-squared:  0.1094, Adjusted R-squared:  0.04085  

 

How might this change our conclusion about whether Brain Activity 

is a linear predictor of Empathy? 

 

P-value approximately 23%, suggesting little evidence of a linear relationship. R squared is 11%. This one data 

point can change the story quite a bit! Worth exploring what is different about this one case. 

 

 

 

Assumptions for Linear Regression Inference 

• Before doing inference for a linear relationship, there are 4 assumptions we need to check. We can 

remember them with the acronym LINE: Linearity, Independence of response, Normality of residuals, 

and Equal variance. 

o Linearity 

▪ Why is this important? If the relationship is better fit by something non-linear, then 

doing a test on a linear term and reporting that analysis might be misleading. 

▪ Never run a regression on two variables without looking at the data first.  

▪ The picture below is an example of data that may be better fit with an exponential 

decay term, rather than simply a linear term. A linear term is working better than no 

model at all, but we could do better! 

 

 

 

 

 

 

 

Not Linear Fit 
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o Independence in Response Variable Observations 

▪ If the data is collected in series, where each y is dependent on the previous y, we may 

have a situation where Y observations are dependent on one another. 

▪ Why is this important? Linear regression is assuming our observations are independent. 

When the data is dependent, then we don’t have a random sample of possible 

observations. This is a completely different data situation!  

▪ If the dependency is time-related, then there are other modeling choices like Time-

Series that would fit the situation. 

▪ In general, this issue is contextually recognized, rather than obvious from a graph. 

 

 

 

 

 

 

 

 

o Normality of Residuals 

▪ Ideally, we want our data points to be normally distributed about the best fit line at any 

cross-section (at any X value) of our plot. 

▪ Why is this important? If the data is skewed at cross-sections of X, then the distribution 

of possible sample slopes may not be normally distributed. This is an assumption we 

need when doing inference. 

▪ See picture on left: even though there is clearly some type of linear relationship, the 

distribution of Y at each cross-section of X is skewed. 

▪ Consistent with the Central Limit Theorem, this issue is minimized with larger samples.  

❖ Small violations should be of little concern 

❖ When df >100, only large violations are problematic. 

 

 

 

 

 

 

 

 

Non-Normality 

Dependent Response 
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o Equal Variance (also called “Homoscedastic”)  

▪ Ideally, we want the variance in Y to remain fairly constant across X.  

▪ Why is this important? If the variance in Y is non-constant across values of X, then there 

may be more estimation error in our slope than the standard error value suggests. It can 

inaccurately lower the p-value for the predictor’s t-test and inflate r2. 

▪ If your scatterplot makes a cone 

shape (like the graph here), then 

your variance is non-constant 

(also called “heteroscedastic”).  

 

 

o How do statisticians deal with 

assumption violations? 

▪ Non-linear fit? Consider a non-linear term. 

▪ Dependency? Consider a different modeling approach that accounts for the 

dependency (like Time Series) 

▪ Non-Normality? Often a “Transformation” is completed on the response variable, or 

possibly on the predictor. 

▪ Non-constant Variance? Often a “Transformation” is completed on the response 

variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heteroscedastic  
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Chapter 13 Additional Practice 

Investigation: Data was collected from 150 births that 

represent a random selection of births in one particular 

hospital. This dataset contains a number of variables 

related to the birth. Let’s examine the relationship 

between how many weeks the mother carried the baby 

(weeks of gestation) and the baby’s birth weight 

Think through our assumptions for simple linear regression. 

How well is each met? 

a) Is a linear fit appropriate? 

Yes. 

 

b) Are the data points independent (no dependency in response across X)? 

 

These are independent observations. Example of dependency would be the same baby’s weight 

taken every day/week. 

 

c) Are the residuals normally distributed about the best fit line? 

 

Seems reasonably normal at each cross-section of X. No large violations, and sample size is quite 

large anyway. 

d) Is the variance approximately equal across X? 

Approximately. Perhaps larger at lower gestation values, but not only a small violation 

 

Using R, we get the following summary output from running a linear regression. 
 
Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -7.31198    1.26305  -5.789 4.08e-08 *** 

weeks        0.37248    0.03268  11.396  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.096 on 148 degrees of freedom 

Multiple R-squared:  0.4674, Adjusted R-squared:  0.4638  

 

 Use this information to write the equation for the line of best fit. 

 

 

Predict the birth weight of a baby born at 35 weeks of gestation. 
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Identify r2 and interpret this value in context (unadjusted). 

 

 

 

Calculate a 95% confidence interval for the true slope value. Notice that the standard error value is 

provided in the output. Also notice the sample size—do we need a t-interval, or is a z-interval ok? 

 

 

 

 

Are we confident that there is at least some linear relationship between gestation and birthweight? 

What information do we find in the output to make that determination? 

 

 

 

Investigation revisited: The candle vendor found a sample slope of -1.183, and the SE for b1 was calculated to 

be 0.2592.   

Using this information, calculate a 95% confidence interval (t-interval) for β1. Use t = 2.011 

 

 

 

Now consider if we were testing whether or not there is a non-zero slope between price and number 

of sales. Based on the interval you found, would you expect the p-value from this investigation to be 

above or below 0.05? Hint: What value would we use as the null hypothesized parameter? 

Since the interval doesn’t include 0, that suggests we’d have a < 0.05 p-value when testing 0 as the null 

 

 

If we had the same sample slope, but from a larger sample size, how would this most likely affect the 

confidence interval? Hint: how would this affect the standard error? 

Larger n would most likely reduce the standard error. This means we have more confidence in our 

point estimate and should have a narrower confidence interval. 
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Chapter 13 Learning Goals 

After this chapter, you should be able to… 

• Differentiate when two numeric variables have a clearly linear relationship, clearly non-linear 

relationship, or lack of relationship 

• Recognize the slope of a linear equation as the expected change in position of the response variable for 

a one unit increase in the predictor variable. 

• Use a linear equation to identify the expected value of the response based on a predictor value. 

• Acknowledge the uncertainty that exists when modeling an imperfect linear relationship 

o Uncertainty in predicting individual Y values that vary at any given X value 

o Uncertainty in selecting the coefficients of the linear equation due to a limited sample of data 

• Identify a residual as the vertical distance between a response value and the model-fitted prediction 

for that value. 

• Calculate r2 (the coefficient of determination) based on the response variance and residual variance 

• Interpret r2 in context for a particular model 

• Distinguish situations of interpolation and extrapolation, and understand why extrapolation may not 

lead to reliable estimates 

• Conceptually make sense of a permutation test in the context of simple linear regression 

• Complete a t-test/z-test for a slope under the null that the slope is 0. 

o Identify the null and alternative hypotheses 

o Identify the null model 

o Calculate the standardized position (z-score or t-score) for our sample slope 

o Generate (or simply interpret) the p-value and make an appropriate conclusion 

• Complete a t-interval/z-interval for a slope (with the appropriate z-score/t-score for that particular 

confidence level provided) 

• Identify coefficients, slope inference features, and r2 from an R regression summary 

• Recognize influential points and understand how their removal may change inferential results 

• Distinguish the LINE assumptions and recognize obvious cases where these assumptions may not hold 

o Identify if there is an obviously non-linear relationship that should be explored instead 

o Identify if these are dependent observations based on the data context 

o Identify if the residuals appear non-normally distributed 

o Identify if the residuals appear to have a clearly non-constant variance across the regression.  


